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Abstract

In this paper, a locking-free meshless local Petrov–Galerkin formulation is presented for shear flexible thick plates,

which remains theoretically valid in the thin-plate limit. The kinematics of a three-dimensional solid is used, instead of

the conventional plate assumption. The local symmetric weak form is derived for cylindrical shaped local sub-domains.

The numerical characteristics of the local symmetric weak form, in the thin plate limit, are discussed. Based on this dis-

cussion, the shear locking is theoretically eliminated by changing the two dependent variables in the governing equa-

tions. The moving least square interpolation is utilized in the in-plane numerical discretization for all the three

displacement components. In the thickness direction, on the other hand, a linear interpolation is used for in-plane dis-

placements, while a hierarchical quadratic interpolation is utilized for the transverse displacement, in order to eliminate

the thickness locking. Numerical examples in both the thin plate limit and the thick plate limit are presented, and the

results are compared with available analytical solutions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The meshless local Petrov–Galerkin (MLPG) method is a truly meshless method, which requires no ele-

ments or background cells, for either the interpolation or the integration purposes. The concept of MLPG

was first proposed by Atluri and Zhu [1], and later discussed in depth in Atluri and Shen [2,3], and in Atluri
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[4]. The most significant difference between this method and the finite element method or any other meshless

method, is that the local weak forms are generated on overlapping local sub-domains, instead of using the

global weak form. Integration of the weak form is performed in local sub-domains with simple geometrical

shapes; therefore no elements or background cells are necessary either for interpolation purposes or for

integration purposes. The MLPG methods have found a wide range of application in 2-D elasto-statics
[5], 2-D elasto-dynamics [6], fluid mechanics [7], convection-diffusion problems [8], thin plates [9], thick

plates [10], fracture mechanics [11,12], electromagnetic field computations [13], strain gradient theory

[14], and multiscale simulations [15]. More recently, significant efforts have been devoted to the develop-

ment of the MLPG method in the 3-D regime. Li et al. [16] applied MLPG domain discretization method

to 3-D elasto-statics. Han and Atluri [17] applied the MLPG BIE methods to 3-D elastic fracture problems.

A detailed comparison of the performance of the MLPG methods, in 3-D problems, was carried out by

Han and Atluri [18]. A more stable and efficient numerical integration scheme to evaluate the weak-forms

was also proposed in the same paper. Han and Atluri [19] also applied the MLPG domain discretization
method to 3-D elasto-dynamic problems of impact and fragmentation.

Sorić et al. [20] applied the 3-D MLPG method to study thick solid plates. By using the kinematics of

a 3-D continuum, the plate was described by sets of two nodes located on the upper and lower surface of

the plate. The local symmetric weak forms were generated on the cylindrical local sub-domains that sur-

round each set of nodes on the plate surfaces. The trial function in the in-plane directions was interpo-

lated by a 2-D moving least squares (MLS) approximation. The test function was of a linear form.

Promising results were obtained for thick plates, with thickness to span ratio greater than 1/20. However,

the drawback of shear locking appeared in the case of thin plates, when the thickness to span ratios were
less than 1/20.

In the current paper, a totally locking-free 3-D MLPG formulation is developed, which remains valid for

both thick as well as thin plates. The shear locking phenomenon was previously addressed in the literature,

using other meshless methods, by specially constructing the shape function of the rotation field to be the

derivative of the displacement field, so that the field inconsistency could be eliminated [21,22]. In this paper,

a different concept, which completely removes the locking phenomenon from its theoretical origin, is used.

The concept of a locking-free weak formulation was first introduced by Atluri [23]. It was successfully ap-

plied to shear flexible beams by Cho and Atluri [24]. By properly choosing the field variables, the shear
locking could be eliminated completely, a priori, without any numerical expediencies such as the reduced

integration, or the use of assumed strains. Using this concept in the solid plate formulation, the generalized

coordinates of the upper–lower nodes are changed to be the mid-plane displacements, and shear strain com-

ponents. The corresponding locking-free local symmetric weak form is constructed over cylindrical shaped

local sub-domains surrounding each upper–lower node set. No reduced-order-integration is necessary in

integrating the present locking-free weak-form. A MLS approximation is used in the interpolation of field

variables in the in-plane directions. Detailed numerical results, which validate the present formulation, are

presented for both thick as well as thin plates.
2. MLPG formulation for a 3-D plate

The presently used concept of a 3-D plate retains the kinematics of three-dimensional continuum in the

flat plate structures. The strong form governing equations are the linear momentum balance equations of a

3-D solid:
rij;j þ bi ¼ 0; ð1Þ

ui ¼ �ui; on Cu; ð2aÞ



118 Q. Li et al. / Journal of Computational Physics 208 (2005) 116–133
ti ¼ rijnj ¼ �ti; on Ct; ð2bÞ

where rij are the components of the symmetric stress tensor, bi are the body forces, �ui are the prescribed

displacements, �ti are the prescribed surface tractions, nj are the components of a unit outward normal to

the global boundary, Cu is the part of global boundary with prescribed displacements, and Ct is the part
of global boundary with prescribed surface tractions.

The plate is discretized with the set of two nodes on the upper and lower surfaces, respectively. Instead of

writing the global weak form for the governing equations, the MLPG method constructs the weak forms

over local sub-domains, which are taken as cylinders standing between upper and lower surfaces around

each node set (Fig. 1).

The local unsymmetric weak form over the Jth local sub-domain is
Z
XJ
s

rij;j þ bi
� �

mi dX� a
Z
CJ
su

ðui � �uiÞmi dC ¼ 0; ð3Þ
where ui is the trial function for the displacement field, XJ
s is the local sub-domain surrounding the Jth node

set, CJ
su is the part of the boundary of the local sub-domain with the prescribed displacements �ui:, and a

denotes a penalty parameter.

By applying the divergence theorem, the local symmetric weak form could be derived as
Z
CJ
s

rijminj dC�
Z
XJ
s

rijmi;j dXþ
Z
XJ
s

bimi dX� a
Z
CJ
su

ui � �uið Þmi dC ¼ 0: ð4Þ
We assume the test function mi to be linear in the thickness direction, as
mi ¼ m0i þ x3m1i; ð5Þ

where m0i and m1i are arbitrary constants.

By substituting the above test functions into Eq. (4) and imposing the boundary condition in Eq. (2b),
one obtains
Z

LJs

ti dCþ
Z
CJ
su

ti dCþ
Z
CJ
st

�ti dCþ
Z
XJ
s

bi dX� a
Z
CJ
su

ui � �uið ÞdC
 !

m0i

þ
Z
LJs

tix3 dCþ
Z
CJ
su

tix3 dCþ
Z
CJ
st

�tix3 dCþ
Z
XJ
s

bix3 � ri3ð ÞdX� a
Z
CJ
su

ui � �uið Þx3 dC
 !

m1i ¼ 0: ð6Þ
h

x3

x1

x2

upper surface

lower surface

middle surface
Jl

Ju

local sub-domain  Ω J
s

Fig. 1. Nodal location and local sub-domain.



Q. Li et al. / Journal of Computational Physics 208 (2005) 116–133 119
Herein the boundary CJ
s of the Jth local sub-domain consists of three parts, CJ

s ¼ LJ
s [ CJ

st [ CJ
su. L

J
s is the

local boundary that is totally inside global domain. CJ
st is the part of local boundary that coincides with

the global traction boundary, i.e., CJ
st ¼ CJ

s \ Ct. C
J
su is the part of local boundary that coincides with the

global geometric boundary, i.e., CJ
su ¼ CJ

s \ Cu.

Because m0i and m1i are independent of each other, Eq. (6) can be decomposed to the following set of
equations
Z

LJs

ti dCþ
Z
CJ
su

ti dCþ
Z
CJ
st

�ti dCþ
Z
XJ
s

bi dX� a
Z
CJ
su

ui � �uið ÞdC ¼ 0; ð7aÞ

Z
LJs

tix3 dCþ
Z
CJ
su

tix3 dCþ
Z
CJ
st

�tix3 dCþ
Z
XJ
s

bix3 � ri3ð ÞdX� a
Z
CJ
su

ui � �uið Þx3 dC ¼ 0: ð7bÞ
Therefore, six governing equations are generated for each local sub-domain.
3. Locking-free formulation

Locking phenomena are observed in the above meshless solid plate formulation. Two types of locking

phenomena are addressed in the current paper, (1) shear locking in the thin plate limit; (2) thickness locking

when Poisson�s ratio is non-zero.

3.1. Shear locking

In finite element analysis, shear locking in a solid shell element is well documented. Various methods such

as assumed strain, and reduced integration, were used for the solid shell elements in order to eliminate the

shear locking [25]. A higher order interpolation was also claimed to relieve the shear locking phenomenon

[26].

In order to reveal the shear locking phenomenon in the meshless solid plate formulation, a local sub-do-

main which does not intersect with the global boundary, with no body forces and no external forces, is exam-

ined. With these assumptions, the integrations over CJ
su, C

J
st and XJ

s in Eqs. (7a) and (7b) are eliminated. The
governing equations simply become
Z

LJs

ti dC ¼
Z h

2

�h
2

Z 2p

0

tiR dh dx3 ¼ R
Z h

2

�h
2

Z 2p

0

njEijkl
1

2

ouk
oxl

þ oul
oxk

� �
dh dx3 ¼ 0; i; j; k ¼ 1; 2; 3ð Þ; ð8aÞ

Z
LJs

tix3 dC�
Z
XJ
s

ri3 dX¼ R
Z h

2

�h
2

Z 2p

0

njEijkl
1

2

ouk
oxl

þ oul
oxk

� �
x3 dh dx3 �

Z h
2

�h
2

Z 2p

0

Z R

0

Ei3kl
1

2

ouk
oxl

þ oul
oxk

� �
r dr dh dx3

¼ 0; i; j;k ¼ 1;2;3ð Þ; ð8bÞ

where R is the radius of the cylindrical local sub-domain, h is the thickness of the plate, nj is the outward

normal on LJ
s , Eijkl is the tensor of elastic constants. If a linear interpolation in the thickness direction is

used for displacements, the plate deformation can be described as
ua ¼ ua0 xb
� �

þ x3ua1 xb
� �

;

u3 ¼ u30 xb
� �

þ x3u31 xb
� �

;

(
ða; b ¼ 1; 2Þ; ð9Þ
where ua0 and u30 are the mid-surface displacements, while ua1 and u31 describe the total rotations. The
derivatives of the displacements become:
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oui
oxa

¼ oui0
oxa

þ x3
oui1
oxa

;

oui
ox3

¼ ui1:

8>><
>>: ð10Þ
Substituting Eq. (10) into Eqs. (8a) and (8b) and integrating through the thickness, we have:
Z
LJs

ti dC ¼ Rh
Z 2p

0

nj Eijab
1

2

oua0
oxb

þ oub0
oxa

� �
þ Eij3a

ou30
oxa

þ ua1

� �
þ Eij33u31

� �
dh ¼ 0; ð11aÞ

Z
LJs

tix3 dC�
Z
Xs

ri3 dX ¼ R
h3

12

Z 2p

0

nj Eijab
1

2

oua1
oxb

þ oub1
oxa

� �
þ Eij3a

ou31
oxa

� �� �� �
dh� h

�
Z 2p

0

Z R

0

Ei3ab
1

2

oua0
oxb

þ oub0
oxa

� �
þ Ei33a

ou30
oxa

þ ua1

� �
þ Ei333u31

� �� �
r dr dh

¼ 0: ð11bÞ

Consider the case when ua0, ua1, u30, u31 are interpolated by a meshless interpolation. While these interpo-

lations will not be exactly polynomials in r and h in each domain, for a C1 continuous trial function, one

may consider their constant components and components that are approximately linear in r. Let
ua1 ¼ Da0 þ Da1r þ higher order terms: ð12Þ

Then it is seen that the first integrand on left hand side of Eq. (11b) will lead to a term of the type Da1Rh

3,

while the second integrand on the left hand side of Eq. (11b) will lead to a term of the type Da1R
3h In the

thin plate limit (h ! 0), we have
R3h

Rh3
¼ R2

h2
! 1: ð13Þ
Thus, the algebraic equation corresponding to Eq. (11b) in the limit as h ! 0 leads to the condition

Da1 ! 0. Thus, ua1 ! Da0 which means ‘‘constant’’ total rotation or zero bending moment in Eq. (11b).

However, in the thin plate limit, bending not only exists, but, it is also expected to be the dominant behav-

ior. Hence, the exact integration will lead to an overly stiff result, and the system locks. In order to eliminate

the shear locking phenomenon, we introduce a new variable ca, such that:
ca ¼
ou30
oxa

þ ua1: ð14Þ
Substituting Eq. (14) into Eq. (9), we have:
ua ¼ ua0 þ x3 ca �
ou30
oxa

� �
; ð15aÞ

u3 ¼ u30 þ x3u31: ð15bÞ

The field variables ua0, u30, ua1, u31 are changed to ua0, u30, ca, u31. The governing equation (11b) becomes
Z
LJs

tix3 dC�
Z
XJ
s

ri3 dX ¼ R
h3

12

Z 2p

0

nj Eijab
1

2

oca
oxb

þ
ocb
oxa

� 2
o
2u30

oxa oxb

� �
þ Eij3a

ou31
oxa

� �� �� �
dh� h

�
Z 2p

0

Z R

0

Ei3ab
1

2

oua0
oxb

þ oub0
oxa

� �
þ Ei33aca þ Ei333u31

� �� �
r dr dh

¼ 0: ð16Þ
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Let ca be approximated as
ca ¼ Ca0 þ Ca1r þ higher order term: ð17Þ

The first integrand will contain a term of the type Ca1Rh

3. The second integrand will contain a term of the
type Ca1R

3h. In the thin plate limit, the algebraic equation corresponding to Eq. (16) will lead to the con-

ditions Ca1 ! 0 and Ca0 ! 0. Thus, ca ! 0; this is physically correct, and does not lead to locking in the

bending behavior in the plate.

3.2. Thickness locking

It is well known that if the Poisson’s ratio is non-zero, when bending occurs in the plate, the strain in the

out-of-plane direction e33 varies linearly in the thickness direction, due to the coupling between the linear
in-plane strains and the normal stress in the thickness direction. Therefore, the linear assumption of

u3 = u30 + x3u31 in Eq. (15b) will lead to an inaccurate result, which is the well known ‘‘thickness-locking’’

phenomenon. Hauptmann et al. [25] introduced another degree of freedom, at the midpoint in a solid shell

element, in order to introduce a quadratic interpolation in the thickness direction. A similar technique is

used in the current paper. The out-of-plane displacement u3 is assumed to be in the form of
u3 ¼ u30 þ x3u31 þ nu32; ð18Þ

where
n ¼ 1

2
1� x23

h
2

� �2
 !

:

Hence, for each local sub-domain, we have seven unknowns: ua0, u30, ca, u31, and u32.
Because we have only six governing equations from the local symmetric weak form, an additional gov-

erning equation needs to be constructed. In order to obtain the 7th equation, the equilibrium is enforced at

the midpoint for each local sub-domain, and the collocation method with the Dirac�s Delta function

dðx� �xJ Þ as the test function, is used. The additional governing equation in the out-of-plane direction

becomes
r3j;j �xJð Þ þ b3 �xJð Þ ¼ 0; ð19Þ

where �xJ is the location of the midpoint for the Jth local sub-domain.
4. Moving least squares approximation

In the MLPG method, the test and trial functions are not necessarily from the same function spaces. In
the current formulation, the test function is chosen to be linear as in Eq. (5). The trial function in the out-of-

plane direction is chosen to be as in Eqs. (15b) and (18). The trial functions for ua0, u30, ca, u31, and u32, in

the in-plane directions, on the other hand, are chosen to be the two dimensional MLS interpolations over a

number of nodes within the domain of influence. While the local sub-domain is defined as the support of the

test function on which the integration is carried out, the domain of influence is defined as a region, where

the weight functions of the nodes inside do not vanish in the local sub-domain of the current node (Fig. 2).

In other words, the domain of influence contains all the nodes that have non-zero coupling with the current

nodal values in the stiffness matrix.
The characteristics of MLS have been widely discussed in literatures [27,28]. The MLS approximation of

any function u for any point x 2 XJ
s , is defined by
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Fig. 2. Local sub-domains and weight functions.
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uh ¼ pTðxÞaðxÞ; x 2 XJ
s ; ð20Þ
where pT(x) = [p1(x),p2(x), . . .,pm(x)] is a complete monomial basis of order m. It needs to be mentioned

here that only the in-plane displacement components are considered in the above vector x, i.e.,

x = [x1,x2], because MLS is only used as in-plane interpolation of the field vectors.

Quadratic basis is used in the current paper
pTðxÞ ¼ 1; x1; x2; x21; x
2
2; x1x2

	 

; ð21Þ
a(x) is a coefficient vector which is defined by minimizing a weighted discrete L2-norm
JðaðxÞÞ ¼
XN
I¼1

wIðxÞ pðxIÞaðxÞ � ûI
	 
2 ¼ P � aðxÞ � û½ �T �WðxÞ � P � aðxÞ � û½ �; ð22Þ
where xI is the position of the Ith node whose weight function wI does not vanish at x.
P ¼

pT x1ð Þ
pT x2ð Þ
� � �

pT xNð Þ

2
66664

3
77775

N�m

; W ¼

w1 xð Þ � � � 0

..

. . .
. ..

.

0 � � � wN xð Þ

2
664

3
775

N�N

; û ¼ û1; û2; . . . ; ûN
	 


1�N
;

where ûI , I = 1, 2, . . .,N are the fictitious nodal values. It needs to be mentioned that in MLS interpolation,

the fictitious nodal value ûI does not equal to the approximated value uh. The stationary condition of J(x)

with respect to the coefficients a(x) leads to the following linear relation
AðxÞm�maðxÞm�1 ¼ BðxÞm�N ûN�1; ð23Þ
where
AðxÞ ¼ PTWP ¼
XN
I¼1

wIp xIð ÞpT xIð Þ; ð24Þ

BðxÞ ¼ PTW ¼ w1 xð Þp x1ð Þ;w2 xð Þp x2ð Þ; . . . ;wN xð Þp xNð Þ½ �: ð25Þ
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By substituting a(x) into Eq. (20), the interpolation function uhðûIÞ is obtained
uh ¼
XN
I¼1

/IðxÞûI ; ð26Þ
where /IðxÞ ¼
Pm

j¼1pjðxÞ½A
�1ðxÞBðxÞ�jI .

Due to the higher-order nature of the plate problem, a 5th order spline type weight function is used:
wIðxÞ ¼
1� 10 dI

rI

� �3
þ 15 dI

rI

� �4
� 6 dI

rI

� �5
0 6 dI 6 rI ;

0 dI 6 rI :

8<
: ð27Þ
Thus, a C2 continuity, in the in-plane coordinates, is guaranteed for the trial function.
5. Numerical discretization

The in-plane MLS interpolations for ua0, u30, ca, u31, and u32, leads to:
uha0 ¼
XN
I¼1

/I ûIa0; ð28aÞ

uh30 ¼
XN
I¼1

/I ûI30; ð28bÞ

cha ¼
XN
I¼1

/I ĉIa; ð28cÞ

uh31 ¼
XN
I¼1

/I ûI31; ð28dÞ

uh32 ¼
XN
I¼1

/I ûI32: ð28eÞ
Substituting Eqs. (28a)–(28e) to Eqs. (15a) and (18), the displacements are discretized to
u1
u2
u3

8><
>:

9>=
>; ¼

XN
I¼1

/I 0 �/I
;1x3 /I x3 0 0 0

0 /I �/I
;2x3 0 /I x3 0 0

0 0 /I 0 0 /I x3 /In

2
64

3
75

ûI10
ûI20
ûI30
ĉI1
ĉI2
ûI31
ûI32

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼
XN
I¼1

UI ûI ; ð29Þ
where /I(x1,x2) is the shape function of the MLS approximation for the Ith node, ûIa0, û
I
30, ĉ

I
a, û

I
31, û

I
32 are the

fictitious nodal values, and N is the total number of node sets in the domain of influence. Stresses can be

calculated by taking the derivatives of Eq. (29) and by multiplying with the constitutive matrix. Surface



124 Q. Li et al. / Journal of Computational Physics 208 (2005) 116–133
tractions can then be calculated from the stresses. Therefore, the discretized governing equations for the Jth

local sub-domain have the final form of
XN
I¼1

Z
LJs

NDBI dCþ
Z
CJ
su

NDBI dC� a
Z
CJ
su

UI dC

" #
ûI ¼ �

Z
CJ
st

�t dC�
Z

XJ
s

b dX� a
Z

CJ
su

�u dC;

XN
I¼1

Z
LJs

NDBI x3 dCþ
Z
CJ
su

NDBI x3 dC�
Z
XJ
s

D0BI dX� a
Z

CJ
su

UI x3 dC

" #
ûI

¼ �
Z
CJ
st

�tx3 dC�
Z
XJ
s

bx3 dX� a
Z
CJ
su

�ux3 dC
0;

XN
I¼1

SI ûI ¼ �b3 �xð Þ;

ð30Þ
where b3ð�xÞ is the 3rd component of body force at mid-plane,
N ¼
n1 0 0 n2 0 n3

0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

2
64

3
75; UI ¼

/I 0 0

0 /I 0

0 0 /I

2
64

3
75;

BI ¼

/I
;1 0 �/I

;11x3 /I
;1x3 0 0 0

0 /I
;2 �/I

;22x3 0 /I
;2x3 0 0

0 0 0 0 0 /I �4 x3
h2
/I

/I
;2 /I

;1 �2/I
;12x3 /I

;2x3 /I
;1x3 0 0

0 0 0 0 /i /I
;2x3 /I

;2n

0 0 0 /I 0 /I
;1x3 /I

;1n

2
666666666664

3
777777777775
;

D ¼ D0

1 m
1�m

m
1�m 0 0 0

m
1�m 1 m

1�m 0 0 0

m
1�m

m
1�m 1 0 0 0

0 0 0 1�2m
2ð1�mÞ 0 0

0 0 0 0 1�2m
2ð1�mÞ 0

0 0 0 0 0 1�2m
2ð1�mÞ

2
66666666664

3
77777777775
; where D0 ¼

E 1� mð Þ
1þ mð Þ 1� 2mð Þ ;

D0 ¼
D61 D62 D63 D64 D65 D66

D51 D52 D53 D54 D55 D56

D31 D32 D33 D34 D35 D36

2
64

3
75;

SI ¼ 0 0 �D31/
I
;11 �D32/

I
;22 D31 þD66ð Þ/I

;1 D32 þD55ð Þ/I
;2 D55/

I
;22 þD66/

I
;11

� �
x3 � 4

h2
D33/

I þ n D55/
I
;22 þD66/

I
;11

� �h i
:

For each local sub-domain, seven equations in the form of Eq. (30) are generated, in terms of the seven

fictitious unknowns. The actual upper–lower nodal displacements are obtained from the solved fictitious

values using Eq. (29).
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6. Numerical example

Three numerical experiments have been performed, in order to illustrate the effectiveness of the present

method. Standard patch tests of a plate under uniform membrane tension, and under uniform pressure, are

first carried out. Cantilever beams in both the thin beam limit, as well as the thick beam limit, are simulated
and the results are compared with the analytical solutions. Square plates under distributed load, in both the

thin and the thick plate limits are also analyzed, and the results are compared with the analytical solutions.

6.1. Plate under uniform tension

A plate under the in-plane uniform tension is considered, in order to check the membrane responses of

the plate (Fig. 3). A plate under uniform pressure is also analyzed in order to check its compression re-

sponse (Fig. 4). The material parameters are taken as E = 1.0, and m = 0.3. The plate is modeled with 18
nodes, including 9 nodes on the top surface and 9 nodes on the bottom surface. In the membrane test, uni-

form tension is applied on the right end of the plate and proper displacement constraints are applied to the

left end. In the compression test, the uniform pressure is applied on the top surface of the plate, and proper

displacement constrains are applied to bottom surface. The satisfaction of the first patch test requires that

the displacements are linear on the lateral surfaces, and are constant on the loaded surface; and the normal

stresses are constant on all the surfaces at the second patch test. Cylindrical local sub-domains with the

radius of 0.8l are used in the analysis, where l is the nodal distance in the in-plane direction. Three-point

Gauss quadrature is used for the numerical integration in cylindrical local coordinates. The present method
passes both of the patch tests.
x1

x3

x2

Fig. 3. Patch test: plate under uniform membrane tension.

x1

x3

x2

Fig. 4. Patch test: plate under uniform pressure.



Fig. 5. Cantilever beams under a transverse load.
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6.2. Cantilever beam in thick and thin beam limit

Cantilever beams under a transverse load are analyzed. A fixed length of L = 10 and a unit width b = 1

are used. The material properties are E = 1,000,000 and m = 0.25. In the in-plane direction, a uniform nodal

distribution with a distance of 0.5 is used for all the cases (Fig. 5). A total of 21 · 3 · 2 nodes are used in the

analysis.

The theoretical solution was given in Timoshenko and Goodier [30]:
ux ¼ � P ð1� �m2Þ
6b�EI

y � h
2

� �
3xð2L� xÞ þ 2� �m

1� �m
yðy � hÞ

� �
;

uy ¼
P ð1� �m2Þ
6b�EI

x2ð3L� xÞ þ 3�m
1� �m

ðL� xÞ y � h
2

� �2

þ 4þ �m
4� 4�m

h2x

" #
;

ð31Þ
where I is the area moment of inertia of the beam, as
I ¼ h3

12
ð32Þ
and
�E ¼
E
1þ2m
ð1þmÞ2 E

(
and �m ¼

�m for plane strain;
m

1þm for plane stress:

(
ð33Þ
A total of five cases with the beam thickness h equals to 2, 1, 0.1, 0.01, 0.001 are analyzed. The slenderness

ratio of L/h of the five cases are 5, 10, 100, 1000 and 10,000, respectively.
The transverse deformation of the thick beam with h = 2 are shown in Fig. 6. The transverse deforma-

tion of the thin beam with h = 0.001 are shown in Fig. 7. Four different weight function support sizes are

used in both the thick beam and thin beam analysis. The best solutions are obtained when the ratio R of the

local sub-domain radius (r1), to the weight function support radius (r2), i.e., R = r1/r2, equals to 3.5. The

weight function support radius r1, and local sub-domain radius r2 are illustrated in Fig. 2. Using the opti-

mum support size, the tip displacements normalized with the exact solution for all the five cases are plotted

in Fig. 8. It can be seen that in the thin beam limit, the shear locking is completely eliminated.

6.3. Square plates under distributed load

The performance of the current formulation is also evaluated by analyzing square plates under uni-

formly distributed loads. Two sets of boundary conditions are used: (1) the plates are simply supported

on the all four sides (SSSS); (2) the plates are clamped on all four sides (CCCC). The schematic of the plates

is shown in Fig. 9. Because of the symmetry of the problem, only a quarter of the plate is modeled. Isotropic

material properties of E = 1.092 · 106, m = 0.3 are used for all the cases. A fixed length of the square plate

a = 10 is used.
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Fig. 6. Transverse deformation of thick beam (L/h = 5).
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Fig. 9. Square plates under uniformly distributed load.
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6.3.1. Thick plates

In the thick plate limit, four plates with different thicknesses are analyzed. Normalized theoretical center
deflections were given by Srinivas and Rao [29] in Table 1. The center deflections were normalized as
�W ¼ GW max

hq , where G is the shear modulus, q is the distributed load. A parametric study is first carried

out on the effects of weight function support sizes on the plate displacements. The center deflections are

plotted against the varying ratios R, of the support radius to the local sub-domain radius, in Figs. 10
Table 1

Thick plates theoretical solutions

Thickness (h) Aspect ratio (a/h) Normalized center deflection

Gwmax/hq (SSSS)

Normalized center deflection

Gwmax/hq (CCCC)

1 2.0 5.00 14.214 5.604

2 1.4 7.14 53.422 18.64

3 1.0 10.00 192.69 62.83

4 0.5 20.00 2878.2 890.3
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Fig. 10. Normalized center deflections vs. support sizes (CCCC).
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and 11. A uniform nodal distribution of 9 · 9 · 2 nodes is used in the parametric study. When changing the

support size, the results oscillate around the theoretical solution and the error is within 5%. In order to

study the convergence property of the current method, five additional models of 7 · 7 · 2 nodes,

11 · 11 · 2 nodes, 13 · 13 · 2 nodes, 15 · 15 · 2 nodes and 17 · 17 · 2 nodes are analyzed. The convergence

of center displacement for the h = 1.0 plate is plotted in Fig. 12.

6.3.2. Thin plates

In the thin plate limit, five cases with aspect ratio a/h equals to 100, 200, 1000, 2000 and 10,000 are ana-
lyzed. For simply supported square plates under uniformly distributed load, the theoretical maximum

deflection at the center is given by Timoshenko [31]:
wmax ¼
4qa4

p6D
; ð34Þ
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Fig. 12. Displacement convergence in thick plate limit (a/h = 10).
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where D is the flexural rigidity of a plate, as
D ¼ Eh3

12ð1� m2Þ :
For clamped square plates under uniformly distributed load with m = 0.3, the maximum deflection at the

center is given by Timoshenko [29]:
wmax ¼ 0:0138
qa4

Eh3
: ð35Þ
The effects of weight function support sizes on the plate displacements are plotted in Figs. 13 and 14. The

oscillation with respect to support size is a little higher than for the thick plate, but still within a reasonable
range. Five additional models with 7 · 7 · 2 nodes, 11 · 11 · 2 nodes, 13 · 13 · 2 nodes, 15 · 15 · 2 nodes

and 17 · 17 · 2 nodes are analyzed in the convergence study. The convergence of the center displacement

for h = 0.01 plate is plotted in Fig. 15. The normalized central deflections are plotted for both thin plates
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and thick plates (Fig. 16). It can be seen that shear locking is completely removed in the current
formulation.
7. Conclusion

A totally locking-free MLPG formulation for plate analysis, employing a three-dimensional solid con-

cept, is presented in this paper. Compared with the traditional five-degree-of-freedom Reissner–Mindlin

plate formulation, the current formulation has seven degrees of freedom for each node set. The solid plate
concept is prone to shear locking and thickness locking phenomena. Instead of using numerical techniques

such as assumed strain and reduced integration to eliminate shear locking, a more theoretically straightfor-

ward approach is used in the current paper. By changing two of the dependent variables, the shear locking
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is completely eliminated. In order to eliminate thickness locking, the 7th degree of freedom is introduced

and, thus, a quadratic out-of-plane interpolation is used for u3.

The above methodology is applied to a cantilever beam in both the thick beam, as well as the thin

beam limits. For both thick beams and thin beams, the current method matches the theoretical solu-

tion accurately. The current method is also applied to square plates under uniformly distributed load.
Both simply supported and clamped boundary conditions are used in the analysis. In both the thick

plate as well as the thin plate limits, the present MLPG results agree with the analytical solution

accurately.

The current solid plate formulation provides another useful member in the MLPG tool box. It is accu-

rate, theoretically straightforward and most importantly, locking-free. It may also be extended, in a

straightforward manner to shells.
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